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SUMMARY

The conventional approach to set the pressure level in a finite element discretization of an enclosed,
steady, incompressible flow is to discard a continuity residual and set the associated pressure basis
function coefficient to a desired value. Two issues surrounding this setting of a pressure datum are
explored. First, it is shown that setting a boundary traction at a single node, in lieu of a Dirichlet velocity
condition, is a preferred alternative for use with pressure-stabilized finite element methods. Second, it is
shown that setting a pressure datum can slow or even stop the convergence of a GMRES-based iterative
solver; though by some appearances a solution may appear to be converged, significant local errors in the
velocity may exist. Under such circumstances it is preferable to solve the consistent singular system of
equations, rather than setting a pressure datum. It is shown that GMRES converges in such cases,
implicitly setting a pressure level that is determined from the initial guess. Copyright © 1999 John Wiley
& Sons, Ltd.

1. BACKGROUND

There has been a long history of research on proper and useful representations of the pressure
field in finite element computations of incompressible flows. This prior research has resulted in
conventional approaches involving mixed-order interpolation with the Galerkin finite element
method (GFEM) and newer approaches employing equal-order interpolation with stabilized
methods. Irrespective of the approach employed for computation, the solution of an incom-
pressible flow within an enclosed domain contains a hydrostatic pressure mode that causes the
pressure field to be indeterminant with respect to an arbitrary constant. Accommodating this
simple effect is straightforward when employing classical GFEM techniques in conjunction
with direct solution methods, but some important issues associated with the hydrostatic
pressure mode when using newer finite element implementations, and when using iterative
solution methods are discussed below.

The relationship between the hydrostatic pressure mode and mass continuity of an incom-
pressible fluid was clearly elucidated by Sani et al. [1,2] and Engelman et al. [3]. Following
their work, our starting point is the statement of global mass conservation&

V
9 · u dV=0, (1)
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where V constitutes the entire domain. By application of the divergence theorem, Equation (1)
is transformed to an equivalent condition:&

G
n · u dG=0, (2)

where G constitutes the entire boundary of the domain.
As shown in Sani et al. [1], the weak form of the equations used in the Galerkin finite

element method enforces the condition prescribed by Equation (1), with the finite element
approximation to the velocity field substituted for the exact velocity field. Furthermore, if the
normal velocity is specified at all boundaries (either pointwise or in an integral sense) as is the
case for all enclosed flows, then Equation (2) must be satisfied exactly, otherwise the problem
is ill-posed and no solution exists. Engelman et al. [3] describe the use of mass-consistent
normals to ensure that the boundary data satisfy Equation (2) exactly. While mass consistency
averts the situation of an ill-posed problem, the matrix that results from the discretization has
a rank one deficiency because of the hydrostatic pressure mode, and therefore is singular. This
situation is subsequently referred to as the consistent singular formulation (throughout this
work it is assumed that the hydrostatic pressure mode is the only cause of singularity;
bifurcation points are not treated, nor are the spurious pressure modes that arise with certain
pressure and velocity basis function combinations).

This singularity in the discrete equations does not always lead to problems. Engelman et al.
[3] pointed out that, provided the boundary conditions satisfy Equation (2) to machine
precision, the finite arithmetic of the computer dictates that the following equation will be
encountered during Gaussian elimination:

e1p=e2, (3)

where ei is an O(1) random number multiplied by the round-off level of the computer, and p
is a pressure unknown. Thus, an O(1) random value is obtained for p, thereby setting a
reasonable, but arbitrary, pressure datum.

An alternate approach for dealing with the rank one deficiency, widely used because of the
convenience of its application, is to discard a single continuity residual that is readily identified
with a specific pressure value within the problem domain. The pressure basis function
coefficient associated with that residual is set to a chosen level, e.g. zero. This approach is
commonly described as setting a pressure datum. By discarding a single continuity residual, the
condition of global mass conservation stated in Equation (1) is relaxed. Global mass conserva-
tion is still assured to the extent that Equation (2) is satisfied by the boundary data. If this is
not the case, a non-zero divergence occurs within the domain, generally isolated to the
immediate neighborhood of the element at which the pressure datum is set, but the problem
remains well-posed.

Setting a pressure datum is not always a suitable approach, however. In particular,
discarding a single residual violates the completeness of stabilized finite element formulations,
such as PSPG (pressure-stabilized Petrov–Galerkin) [4,5] and GLS (Galerkin least squares)
[5,6], since the weighted residuals of these methods blend components of the continuity and
momentum equations together. An alternate approach suitable to these formulations is
described and tested in Section 3.1 of this paper. An approach similar to the ‘node-freeing’ idea
put forth by Sani et al. [2] is employed, whereby the normal component of the traction is set
at a single node, thereby establishing the global pressure level. This procedure requires that a
single momentum residual be retained at the boundary, in lieu of applying a boundary
condition on the normal velocity at that point. Doing so relaxes the condition of global mass
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conservation given by Equation (2). Global mass conservation is assured, however, because
Equation (1) is still satisfied by the pressure-stabilized formulation.

Another circumstance in which setting a pressure datum can be problematic is when using
an iterative solver on the linear system of equations that arises from the finite element
discretization. Section 3.2 shows that imposing a pressure datum can greatly retard conver-
gence of a GMRES-based iterative solver [7,8], particularly when solving large three-dimen-
sional problems. When solution convergence is judged by conventional criteria, it may appear
that the solution is converged, or very nearly converged, when in fact significant local errors
in the velocity may exist. This phenomenon occurs when using either classical Galerkin or
pressure-stabilized formulations. Substituting a boundary traction in the manner described in
Section 3.1 does not ameliorate the problem. Fortunately, it proves unnecessary to set either
a pressure datum or a boundary traction when using GMRES. Indeed, a recent work by
Brown and Walker [9] proves that under certain conditions, GMRES and equivalent methods
converge to a least-squares solution of singular linear systems. We show that the conditions
laid out in Reference [9] apply in the case of the singular systems considered here. We also
show that under such conditions GMRES implicitly determines a unique pressure level that is
a function of the initial guess.

2. PROBLEM FORMULATION AND DISCRETIZATION

We consider flows governed by the steady Navier–Stokes equations, written in dimensionless
form for an incompressible fluid, as

Reu · 9u=9 · T, (4)

9 · u=0, (5)

where T= −pI+9u+ (9u)T is the total stress tensor, and I the identity tensor. The fluid
velocity u is measured in units of a characteristic velocity V, the dynamic pressure p in units
of mV/L, and Cartesian co-ordinates x, y and z in units of L, where L is a characteristic length
and m is the fluid viscosity. The effect of inertia is characterized by the Reynolds number,
Re=rVL/m, where r is the fluid density. Boundary conditions on the various problems solved
are described elsewhere in this paper.

Several finite element discretizations of Equations (4) and (5) are used in this paper. In
Section 3.1, two-dimensional problems are discretized using both the GFEM (Galerkin finite
element method) with biquadratic velocity–linear-discontinuous pressure elements [10] and the
PSPG (pressure-stabilized Petrov–Galerkin) formulation with bilinear velocity–bilinear pres-
sure elements [4,5]. In both cases a structured mesh of quadrilaterals is used. In Section 3.2,
three-dimensional problems are discretized using the GFEM with triquadratic velocity–linear-
discontinuous pressure elements over a structured mesh of hexahedra.

In all cases, standard procedures are applied to obtain weak-form weighted residuals,
denoted as

R(y)=0, (6)

where R is a non-linear vector equation and y is the vector of velocity and pressure basis
function coefficients. Equation (6) is solved using the Newton iteration. An initial guess of the
vector of unknowns is made, y(0), and successive updates to the unknowns vector are computed
using
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y(k+1)=y(k)+x(k), (7)

where k is the iteration counter. The update vector x(k) is generated by solution of the linear
equation set

J(y(k))x(k)= −R(y(k)), (8)

where Jij=(Ri/(yj are elements of the Jacobian matrix. Equation (8) is solved using a direct
frontal routine in the two-dimensional problems and the GMRES (generalized minimal
residual) iterative method of Saad and Schultz [7,8] in the three-dimensional problems.
GMRES is used with diagonal preconditioning and restarting, as described in Yeckel and
Derby [11].

To terminate the Newton iteration it is necessary to judge when the solution to the residuals
is converged. Treating the solution update as a continuous function (the update vector is
interpolated using the basis functions), two norms are computed, the L2-norm and the
L�-norm:

L2,update=x2=
!&

V
(�du �2+ �d6 �2+ �dw �2+ �dp �2) dA

"1/2

:
!1

N
%
N

i=1

xi
2"1/2

, (9)

L�,update=x�=max
V

(�du �, �d6 �, �dw �, �dp �):max
i

�xi �, (10)

where du, d6, dw, and dp are the update fields of the velocity components and pressure.
Equation (9) approximates a spatial average of the update, therefore, it is a more useful
criterion than the widely used L2 vector-norm, the interpretation of which depends on the
problem size N. Similar norms are also computed for the residual Equation (6):

L2,residual=R2:
!1

N
%
N

i=1

Ri
2"1/2

, (11)

L�,residual=R�:max
i

�Ri �. (12)

The issue of determining suitable tolerances for these norms for assessing whether a solution
is adequately converged is discussed later.

The two-dimensional problems of Section 3.1 are solved using a serial workstation (a
PowerComputing Power 120), and the three-dimensional problems of Section 3.2 are solved
using the Thinking Machines Corporation CM-5, a distributed memory, multi-processor
supercomputer. Interested readers should consult Reference [12] for more details on the
parallel implementation of the algorithms used to solve the three-dimensional problems.

3. RESULTS AND DISCUSSION

3.1. Setting the pressure le6el when using stabilized methods

Stabilized finite element methods differ from the GFEM in that individual residuals can no
longer be identified entirely with momentum or continuity. Instead, the residuals all represent
some linear combination of momentum and continuity contributions. Residuals can be
identified with the basis function type that weights them, however. For example, the GLS and
PSPG residuals weighted by the pressure basis functions ci take the form&

V
ci9 · uh dV+ %

Nel

e=1

&
Ve

t9ci · [Reuh · 9uh−9 · Th] dV=0, (13)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 19–34 (1999)



SETTING A PRESSURE DATUM 23

where Th is the total stress tensor computed using uh and ph, the finite element approximations
to the velocity and pressure. These are approximated in terms of piecewise polynomial basis
functions f and c, as

uh= %
N

k=1

ukfk(x), (14)

ph= %
M

k=1

pkck(x). (15)

Note that the first integral in Equation (13) corresponds to the continuity residuals in the
GFEM. In PSPG and GLS these residuals are modified by the stabilizing term given in the
second integral. The parameter t is obtained by non-dimensionalizing the definition given in
Reference [5].

Gresho, Sani, and co-workers have shown that it is of paramount importance that any finite
element formulation satisfies global mass conservation [1–3,13,14]. Following their work, and
noting

%
Mh

i=1

ci=1, %
Mh

i=1

9ci=0, (16)

it is clear that a summation of Equation (13) over the appropriate subset of Mh pressure basis
functions enforces global mass conservation. Because the space of pressure basis functions
must always contain the hydrostatic pressure level, Equation (16) must be satisfied by some
subset Mh of any valid basis function set.

In principle, the second term of Equation (13) could be zero, assuming an exact solution to
Equations (4) and (5) could be represented by uh. In practice, however, this cannot be the case
in a non-trivial flow. A non-zero contribution is required to achieve stabilization of element
types that use equal-order interpolation for velocity and pressure. Therefore, the validity of
discarding one of these residuals in order to set a pressure basis coefficient is subject to
question, because doing so implies that the second term is identically zero over the element in
question. This supposition violates the least-squares minimization procedure, at least locally,
when applied to the GLS formulation. On the other hand, this second term should be small,
so a large error is not expected to be induced by this procedure. To be certain, however, we
seek an alternative that allows us to remove the redundant specification of global mass
conservation that occurs when the boundary data imply Equation (2), while at the same time
establishing the pressure level.

As noted previously, Sani et al. [2] put forth an alternative to setting a pressure datum,
which they refer to as ‘node freeing’. They applied the node-freeing idea in the context of the
non-physical checkerboard pressure mode. This mode is caused by a redundant constraint
among the tangential boundary velocities that arises when certain combinations of boundary
conditions and basis function types are used. The mode can be eliminated by relaxing one of
the redundant constraints. Setting a pressure datum is one way to do so. Another way is the
node-freeing alternative, in which a tangential boundary traction is set at a single node,
thereby retaining a single momentum residual at the boundary. A similar approach, described
here, can be applied to eliminate the hydrostatic mode.

The key to eliminating the hydrostatic pressure mode is to eliminate the redundancy of
Equations (1) and (2). In setting a pressure datum, this task is accomplished by discarding one
of the continuity residuals, which has the effect of removing Equation (1) from the equation
set. The node-freeing method proposed here is to remove Equation (2) from the equation set.
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The procedure is based on imposing the normal component of traction at a single node along
the boundary in lieu of imposing a condition on the normal component of velocity there. How
this is done depends on how the boundary data are enforced and is best illustrated via
examples.

In the simplest case, Dirichlet boundary conditions are imposed by specifying values of all
velocity components along the boundary (it is assumed that the specified values are consistent
with Equation (2)). Ordinarily, all momentum residuals at those nodes are discarded from the
equation set. Should the normal to a boundary lie in the direction of a co-ordinates axis, the
node-freeing procedure is to retain a single residual that represents the normal component of
momentum associated with one of the boundary nodes. It follows that the value of the normal
velocity component at that node is not specified, but must be computed as part of the solution.
If, e.g. x is constant along some boundary, then the x-momentum residual is retained in lieu
of specifying the value of the u component of velocity. Of course, since Equation (1) is satisfied
by any solution to the equations, the computed value of the normal component of velocity
must be consistent with global mass conservation, therefore it must equal zero.

In addition to eliminating the redundancy of Equations (1) and (2), the node-freeing
procedure must also set the global pressure level. To do so properly requires use of the
stress-divergence form of the momentum equations. Then applying the natural boundary
condition on the momentum residual at the boundary node amounts to specifying the normal
traction, which effectively determines the global pressure level (see, e.g. Reference [14]). Since
the pressure level is arbitrary, it is convenient to impose no boundary condition at all, which
is equivalent to a normal traction equal to zero.

The situation is slightly more complicated when the boundary normal does not lie conve-
niently in the direction of a co-ordinate axis. In the two-dimensional case it is necessary to
replace Dirichlet conditions on u and 6 at a single boundary node with the conditions

t · u=Vt, (17)

n · M=nxMx+nyMy=0, (18)

where Vt is the specified value of the tangential velocity, Mx and My are the x- and
y-momentum residuals, and n and t are the unit normal and tangent at the boundary. In three
dimensions it is necessary to add an additional condition on the tangential component of the
velocity to replace the Dirichlet condition on w. If the boundary is curved, it may be necessary
to use the method of mass-consistent normals of Engelman et al. [3] to obtain a computed
normal velocity component equal to zero at the affected node, but in principal, the node-free-
ing procedure is the same.

Clearly, it possible to use node-freeing as a substitute for setting a pressure datum,
irrespective of the conditions imposed on the tangential component of velocity or momentum,
providing the boundary data are consistent with Equation (2). Hence the procedure can be
more generally implemented than demonstrated by the case discussed above, in which Dirichlet
conditions are used for all velocity components.

To validate the approach just described, we solve for a Re=10 flow in a lid-driven cavity
on a unit square, using both GFEM and PSPG formulations. No-slip boundary conditions are
imposed at all boundaries, and one side of the cavity translates at uniform speed. A direct
frontal routine is employed to solve the linear system (8). Uniform meshes of 20×20 elements
(GFEM case) and 40×40 elements (PSPG case) are used, which results in discretizations of
roughly equal number of unknowns. Tables I and II show results of the GFEM and PSPG
cases, respectively. Characteristic solution quantities given in the table include cmin, the
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Table I. GFEM-discretized 2D lid-driven cavity results (symbols explained in text)

Dpmax 	V 9 · uh dVFormulation cmin Vn

295.8 –9×10−13−9.9964×10−2Consistent singular
−9.9964×10−2 295.8 −8×10−13 –Pressure datum

−8×10−14−6×10−13295.8−9.9964×10−2Traction
(U-lower left)

−8×10−14−9.9964×10−2 295.8 −6×10−13Traction
(V-lower left)

−6×10−13295.8 8×10−14−9.9964×10−2Traction
(V-upper left)

295.8 −8×10−14−6×10−13Traction −9.9964×10−2

(U-upper left)

streamfunction value at the center of the primary vortex; Dpmax, the maximum pressure
difference over the entire cavity; the global divergence 	V 9 · uh dV; and Vn, the normal velocity
component at the node where the normal traction is set to zero.

The agreement between the two computed solutions is excellent. The value of cmin computed
using the PSPG formulation agrees to within 0.2% of the value computed using the GFEM.
This small discrepancy might be explained by our neglecting the stabilization terms arising
from the deviatoric terms of the stress tensor in Equation (13). It should be noted that the
large difference in Dpmax between the two formulations is no cause for concern. There are
non-integrable singularities in the continuum statement of the lid-driven cavity problem,
therefore, the maximum and minimum pressures grow without bound as the mesh is refined.
Thus, Dpmax is merely useful when comparing solutions obtained on the same mesh with the
same basis functions.

The GFEM results shown in Table I corroborate the new approach against the more
conventional technique of setting a pressure datum directly. First, note that setting a pressure
datum yields essentially the same results as obtained from the consistent singular formulation
(i.e. the approach of doing nothing). The only difference in the solution is a different absolute
pressure level. Note also that because the lid-driven cavity has straight sides, mass-consistency
is achieved without employing mass-consistent normals. The new boundary traction approach
(i.e. the node-freeing formulation) was tested at four different locations in the GFEM case, to
assure that the correct velocity Vn is computed irrespective of the location. Indeed, the
computed value of Vn is virtually zero, as it should be according to Equation (2).

The PSPG results are shown in Table II and are consistent with the GFEM results. Clearly,
the boundary traction approach yields valid results that are identical to those obtained using
the conventional pressure datum approach.

Table II. PSPG-discretized 2D lid-driven cavity results (symbols explained in text)

Vn	V 9 · uh dVDpmaxcminFormulation

−9.9802×10−2 406.4 −1×10−11 –Consistent singular
Pressure datum −9.9802×10−2 406.4 −1×10−11 –
Traction −9.9802×10−2 406.4 −1×10−11 −5×10−14
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Figure 1. Domain of the three-dimensional lid-driven cavity.

3.2. Setting the pressure le6el when using GMRES

The results and discussion in this paper thus far have been predicated on the assumption
that the linear system can be solved to a high degree of precision at each Newton iteration via
a direct solver. However, it is not always possible to use a direct method when solving large
three-dimensional problems, due to computer memory limitations or excessive operation
counts. Therefore, an iterative method of some sort must be used to solve the linear system.
Although it is theoretically possible to solve a linear system to a high degree of precision using
an iterative solver, it is often not feasible for a number of reasons ranging from inadequate
preconditioning to computer round-off error. Even in those cases where it is feasible, it may
be unaffordable because of memory or operation count limitations.

Here we consider the implications of solving the consistent singular system using an iterative
solver and the effect of setting a pressure datum on convergence. We confine ourselves to
reporting our experience using GMRES [7,8], but speculate that the phenomenon reported
here applies to other projection-based iterative solvers as well. The test problem is the
three-dimensional lid-driven cavity [15–17]; the domain is shown in Figure 1. No-slip
boundary conditions are applied everywhere. The top surface, exclusive of the edge nodes,
moves at constant velocity in the direction indicated. A mesh of 10×10×20 elements (62243
unknowns) is used unless otherwise noted.

In GMRES, the linear system of equations (8) is projected onto a Krylov subspace. Then an
approximate solution xm

(k) is computed, and minimizes the L2-norm of the residuals of the
linear system, given by

L2,GMRES=Jxm
(k)+R2=

' %
N

i=1

(Jij xm, j
(k) +Ri)2, (19)

where summation over j is implied. A solution that minimizes Equation (19) is referred to as
a least-squares solution, provided that GMRES converges without breakdown. The subscript
m refers to the mth GMRES iterate in the solution of Equation (8). To be of practical use, the
Krylov subspace should be much smaller than the original system (typically we use a subspace
size of 25–100 in problems with 105–106 unknowns). Often such a small subspace cannot give
a satisfactory approximation to xm

(k) without restarting, as described in Saad [8]. Even then the
method can stagnate, which means that a point is reached where further restarting no longer
reduces L2,GMRES to a meaningful extent. Our approach, described in Reference [11], is to take
the Newton step after a maximum number of restarts (typically 20) has been reached, or the
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method has stagnated, regardless of the size of L2,GMRES. Of course, enough Newton iterations
are taken to assure convergence of the original problem.

The GMRES method does not strictly require that the linear system of equations is
well-posed. Indeed, Brown and Walker [9] have recently shown that if the null space of J is
equivalent to the null space of JT, then GMRES converges without breakdown to a
least-squares solution that minimizes Equation (19). It is assumed that the hydrostatic pressure
mode is the only cause of singularity, therefore, the null space of J consists solely of that mode.
For any square matrix, the dimension of the null space of the transpose of a matrix is identical
to the dimension of the null space of the matrix. Therefore it is sufficient to prove that the
hydrostatic pressure mode belongs to the null space of JT, i.e. given Jh=0, then JTh=0,
where h is the hydrostatic null vector. To prove this, first we note that the GFEM
discretization can be written in matrix form [1,18], as

[K+N(U)]U+CP= f,

CTU=g, (20)

where U is a vector of velocity unknowns and P is a vector of pressure unknowns. Also, K is
the viscous stress matrix, N(U) is the advection matrix, C is the pressure gradient matrix, CT

is the divergence matrix, and f and g account for the effect of boundary conditions (see
Reference [18] for a more detailed description of these terms). Observing that elements of h
corresponding to velocity unknowns are identically zero, Jh takes the form

Jh=
�[K+N(U)+N%(U)U]

CT

C
0
n� 0

hp

n
=
�Chp

0
n

=0, (21)

from which it follows that Chp=0, a result previously obtained by Sani et al. [1]. Since
(CT)T=C, JTh also implies that Chp=0. Thus h belongs to the null space of JT, which
completes the proof.

We note in passing that another pressure mode, the pure checkerboard mode, is also
characterized by the condition that Chp=0 [1]. Therefore, it is expected that GMRES will
converge when this mode is present, either alone or in conjunction with the hydrostatic mode.

Pressure-stabilized methods such as PSPG and GLS do not produce the symmetry of the
off-diagonal blocks given by the GFEM in Equation (21). In the PSPG method, for example,
Jh is given by

Jh=
�[K+N(U)+N%(U)U]

CT+G6T
C
Gp

n� 0
hp

n
=
� Chp

Gphp

n
=0, (22)

where the additional contributions G6 and Gp correspond to the stabilizing terms in the second
integral in Equation (13). Note that for h to be the hydrostatic null vector requires that
Gphp=0, in addition to Chp=0. Also, to prove that JTh=0 requires proving that G6hp=0
and Gp

Thp=0. From Equation (13) we obtain

Gp,ij= %
Nel

e=1

&
Ve

t9ci · 9cj dV, (23)
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G 6,ijT = %
Nel

e=1

&
Ve

t9ci ·
( [Reuh · 9uh−9 · Th]

(uj

dV, (24)

where uj refers to all velocity basis function coefficients. It follows that

(Gphp)i= %
M

j=1

Gp,ij hp, j= %
Nel

e=1

&
Ve

t9ci · %
M

j=1

(hj9cj) dV, (25)

(G6hp)i= %
M

j=1

G6,ij hp, j= %
Nel

e=1

&
Ve

t
( [Reuh · 9uh−9 · Th]

(uj

· %
M

j=1

(hj9cj) dV, (26)

where summation over the number of pressure basis functions M has been moved inside the
integral without loss of generality. Also, because Gp is symmetric, Gp

Thp=Gphp. We conclude
that if

%
M

j=1

(hj9cj)=0, (27)

then JTh=0, which is the desired result.
We are only able to prove that Equation (27) holds for a given pressure basis type on a case

by case basis. Note that the sum in Equation (27) is taken over all M pressure basis functions,
whereas in Equation (16) the sum is over a subset Mh of the basis set. For any basis set in
which Mh=M, hj must equal the same arbitrary constant for all j. Then hj can be moved
outside the sum, and Equation (16) applies. For quadrilateral (2D) and hexahedral (3D)
elements these include constant discontinuous, continuous bilinear, continuous trilinear,
continuous biquadrilateral, and continuous triquadrilateral basis functions. For triangular
(2D) and tetrahedral (3D) elements these include linear-continuous basis functions. Linear-dis-
continuous basis functions provide an example in which MhBM. In this case, hj must equal
the same arbitrary constant for all the constant members of the set, and zero otherwise. But
9cj=0 for these members, so Equation (27) must hold.

Though we cannot prove Equation (27) in general, we suspect that it holds for all valid
pressure basis function types used in conjunction with pressure-stabilized methods. Our basis
for this statement is that any valid pressure basis must implicitly contain the hydrostatic null
vector, which from Equation (22) requires that Gphp=0, which would imply Equation (27).

It is easy to extend this analysis to the GLS case, in which Equation (22) is modified by the
addition of terms to both upper blocks that arise from SUPG stabilization [5]. Modifications
to the upper left block do not alter the conclusions. The additional terms that appear in the
upper right block incorporate the gradient of pressure basis functions in a manner similar to
Equation (26). Thus these terms do not alter the conclusions provided that Equation (27) is
satisfied.

Likewise, it is a simple matter to incorporate time dependence to the analysis. In the GFEM,
time dependent terms modify only the upper left block. In PSPG and GLS, additional terms
also appear in the lower left block, but once again these terms do not alter the conclusions
provided that Equation (27) is satisfied.

Brown and Walker [9] also prove that under the conditions for which GMRES converges to
a least-squares solution without breakdown, the solution xm

(k) is unique. xm
(k) represents the

solution update in Equation (7), which is added to the solution at the previous iteration,
therefore, it is concluded that the hydrostatic pressure level is uniquely determined, and is set
by the initial guess. We have verified this conclusion with numerical experiments in which the
initial guess is shifted by an arbitrary constant, which results in a shift of the computed
pressure field by exactly the same constant. It is easy to appreciate this result by noting that
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Table III. GFEM-discretized 3D lid-driven cavity results (symbols explained in text)

Case Formulation 	V 9 ·uh dV �	Ve 9 ·uh dV�max wmin wmax Vn

–2.87×10−2−2.87×10−22×10−103×10−151 Consistent
singular

6×10−23×10−152 –6.14×10−2−2.06×10−2Pressure
datum

3 2×10−15 –Pressure −2.03×10−22×10−1 2.30×10−1

datum
4 Traction 2×10−2 9×10−6 0.141.40×10−1−2.08×10−2

the addition of any amount of hydrostatic pressure to the initial guess does not alter the
Krylov subspace, and therefore has no effect on Equation (19). The hydrostatic pressure level
contained in the initial guess, y(0), is simply carried along via Equation (7).

Ironically, it is when a pressure datum is set to remove the hydrostatic pressure mode that
problems arise using GMRES. If the pressure datum differs much from the value that would
otherwise be computed at that location (via the initial guess), then convergence of GMRES is
greatly retarded. The results in Tables III and IV illustrate this situation.

Table III shows various measures of the computed solutions in four cases (all employing
GFEM with a mixed interpolation; tests using GLS with equal-order interpolation on an
unstructured mesh of tetrahedra produced similar results). Case 1 is the formulation in which
no datum is set, leading as before to a consistent singular system. In Cases 2 and 3, a datum
is set in the conventional manner by discarding an appropriate continuity residual and
replacing it with a pressure value constraint. Different preconditioning methods were used in
Cases 2 and 3. In Case 4, the node-freeing method discussed in Section 3.1 is employed in lieu
of setting a pressure datum.

In Cases 1–3, the global divergence-free condition is satisfied to near machine precision, as
indicated by the tabulated entries of 	V 9 ·uh dV. The linear-discontinuous pressure basis
functions used here include a constant function, therefore, continuity should be also satisfied
on each element. The results in Cases 2 and 3, however, show that the maximum elemental
divergence, [	Ve 9 ·uh dV]max, is quite large when a pressure datum is set. Significantly, this
maximum occurs in the element in which the continuity residual has been discarded to set the
pressure datum. In effect, a small area of large spurious divergence is balanced by a much
larger area of slight divergence.

In Case 4, the results differ somewhat in that the global divergence-free condition is not
satisfied. The cause is a leak at the boundary node at which the normal traction is imposed
according to the node-freeing method. Another indication of this leak is the computed value

Table IV. Convergence of GFEM-discretized 3D lid-driven cavity results

Case L2,GMRES L2,update L�,update L2,residual L�,residual

1 6×10−10 5×10−11 4×10−107×10−10 5×10−12

2×10−72×10−42×10−59×10−62 4×10−6

3 8×10−5 2×10−7 1×10−7 8×10−7 3×10−5

4 2×10−5 6×10−10 3×10−9 6×10−8 7×10−7
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Figure 2. Transverse velocity profiles plotted at cuts symmetric about the midplane of the cavity, i.e. z=0.25, 0.75,
2.25, 2.75, for the Re=10, three-dimensional, lid-driven cavity solved via GFEM using Newton’s method and
GMRES. (a) Fine grid solution for Case 1, the consistent singular formulation. (b) Coarse grid solution for Case 1,

the consistent singular formulation. (c) Coarse grid solution for Case 3, where a pressure datum is specified.

of Vn given in the table. The mass defect induced by this leak appears within the domain as
a small divergence that is nearly equi-distributed among the elements. In fact, the condition
	V 9 · uh dV=	G n · uh dG is satisfied to machine precision, but neither side of this equation is
zero, due to the spurious leak at the boundary.

Another indication of a problem is seen by comparing the minimum and maximum values
of the transverse velocity component, w. In the Case 1 computation, the flow is perfectly
symmetric about the midplane of the domain and wmin= −wmax. Clearly, symmetric flow
fields have not been obtained in the computations where a pressure datum has been set, i.e.
Cases 2 and 3. Nor is a symmetric flow field obtained when the node-freeing method is
employed in Case 4. These effects are further illustrated by the transverse velocity profiles
plotted in Figure 2. The transverse velocity components are shown as 2D velocity profiles:
vertical planes through the cavity are displaced by a number of units equal to 20 times the
transverse velocity component. These profiles should be symmetric about the cavity midplane,
as shown in Figure 2(a), in Case 1 computed with a fine mesh of 15×15×30 elements
(202863 unknowns) to assess convergence of the solutions with respect to mesh refinement.
Figure 2(b) shows the Case 1 computation on the coarser mesh used in the test calculations of
this section. While somewhat less smooth than the fine mesh calculation, it is obviously still
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symmetric about the midplane of the cavity. Figure 2(c) shows the results of the Case 3
computation; again, this flow is clearly unsymmetric. The flow in the x–y plane is not strongly
affected by the discrepancy in the relatively weak transverse flow component (see Figure 3).
The inability to correctly predict flow symmetry is grave, however, because symmetry-breaking
bifurcations are known to exist in the 3D lid-driven cavity [16].

These results make it clear that the solution is not fully converged in Cases 2 and 3 in the
vicinity of the element in which the continuity residual has been discarded. Nor is the solution
fully converged in Case 4 in the vicinity of the boundary node at which the normal traction is
imposed. It is then relevant to inquire whether the various residual and update norms used to
assess convergence give a clear indication of this condition. Table IV shows values of several
norms, defined by Equations (19) and (9)–(12), respectively, in the four cases discussed above.
In the Case 1 computation, all of the norms are very small, suggesting that convergence is
achieved to a high degree. In Cases 2–4, the residual norms are several orders of magnitude
larger, indicating that these solutions are less converged than that obtained in Case 1. Yet, the
norms in these three cases still seem reasonably small, particularly the L2-norms of the update
and residual.

Understanding the behavior of the update norms, L2,update and L�,update requires a broader
knowledge of the calculations. In Cases 2–4, the GMRES iteration stagnated, therefore, it was
not possible to converge the solution to the linear system any better than shown in the table.
Indeed, two different diagonal preconditioners were used in an attempt to converge the
problem as much as possible (the type 2 and type 3 preconditioners described in Reference [11]
were employed in Case 2 and 3, respectively). The solution update norms are small simply
because GMRES has stagnated, not because the Newton iteration has converged. A small
solution update demonstrates convergence of Newton’s method, only if the linear system has
been solved to a sufficient degree of precision, which evidently is not the case here. Instead, the
Newton iteration has only reached a point where the solution of Equation (8) is orthogonal to
the Krylov subspace.

The interpretation of the residual norms, L2,residual and L�,residual, in Cases 2–4 in Table IV
again requires a deeper consideration. Unlike the solution update norms, the residual norms
provide a measure of convergence that is independent of the accuracy of solution of the linear

Figure 3. Speed contours in the x–y plane at z=2.75 (contours range from 0 to 1 at intervals of 0.1) for the Re=10,
three-dimensional, lid-driven cavity solved via GFEM using Newton’s method and GMRES. (a) Case 1, the consistent

singular formulation. (b) Case 3, where a pressure datum is specified.
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system (8). In this sense, the residual norms provide a more reliable indicator of convergence
of Newton’s method. However, the scale of the residuals is set by how well the discretized
equations, in this case force balances, are satisfied. It is often more difficult to anticipate the
magnitude of these forces than the magnitude of the unknowns in a given problem, because
typically, the field variables can be reliably scaled to be O(1) quantities. Consequently, it is
often difficult to gauge the level of convergence by the absolute magnitude of the residuals.
Case 3 is a good example of this outcome; while the L�,residual=3×10−5 appears rather small,
the computed solution still contains a significant error, as evidenced by the unsymmetric flow
shown in Figure 2(c).

We do not have a rigorous explanation for why GMRES stalls without converging when a
pressure datum is imposed. Numerical experiments in which the initial guess is shifted by an
arbitrary constant provide some illumination, however. Over most of the domain the com-
puted pressure is shifted by the same constant, similar to results described above in the
consistent singular case. But the pressure basis coefficient at which a datum is set converges to
the value of the imposed datum, whether or not this value matches the hydrostatic pressure
level elsewhere. As a result, a pressure spike occurs in the immediate neighborhood of the
element at which the pressure datum was set. It is this non-physical pressure spike that
produces the unsymmetric flow artifact in Figure 2(c). We speculate that the difficulty arises
from the inability of GMRES to construct a suitably rich Krylov projection subspace to
represent a hydrostatic contribution to the pressure field. Such a contribution is required to
shift the pressure field in accordance with the level set by the datum.

4. CONCLUDING REMARKS

Several areas of concern have been identified when using modern FEM formulations for
calculating enclosed, steady, incompressible flows. Under certain situations, an improper
accommodation of the hydrostatic pressure can lead to inconsistencies or, even more impor-
tantly, significant error in computed velocity fields. Numerical examples of such effects were
presented in this manuscript.

The first issue involves the use of pressure-stabilized formulations in conjunction with a
direct solver. Removing the extra constraint of the hydrostatic pressure mode is generally
desirable; however, the conventional approach of discarding one of the residuals in order to set
a pressure basis coefficient violates the consistency and completeness of the underlying
formulation. While our test calculations found that this violation did not lead to severe
consequences, a more consistent method of accommodating the hydrostatic pressure mode is
to apply a boundary traction condition, as described in Section 3.1. The boundary traction
idea is not totally new [2]; however, this approach takes on added value in the context of
pressure-stabilized formulations.

The second issue discussed in this manuscript is potentially more important, because it can
lead to significant error in computing velocity fields. This issue arises when solving the
consistent singular discrete system using an iterative solver. The results of Section 3.2
demonstrated that the setting of a pressure datum can slow or even stop the convergence of a
GMRES-based iterative solver. While we have not presented rigorous arguments to explain
this effect, we believe that it arises from the inability of GMRES to construct a suitably rich
Krylov projection subspace, especially if the pressure field contained within the initial solution
vector is inconsistent with the desired datum. This behavior is made even more dangerous by
the possible misinterpretation of vector norms commonly used to judge convergence. If the
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iterative method stagnates, the interpretation of the solution update norm becomes unreliable,
i.e. a small update vector does not necessarily imply convergence. Alternatively, monitoring of
the residuals norm can also be unreliable due to scaling uncertainty. In very large problems,
such as those encountered in the calculation of three-dimensional flows, the L2-norm can
effectively mask local non-convergence by averaging over many degrees of freedom. Due to
these issues, we advocate the solution of the consistent singular problem when iterative
methods are employed. It is shown that GMRES converges in such cases, whether using the
conventional GFEM, or pressure-stabilized formulations such as GLS and PSPG. This
strategy results in a pressure datum set implicitly by the method, rather than explicitly by the
user.

The phenomenon described above is not limited to the lid-driven cavity, nor to the classical
GFEM formulation. We have observed similar results in a GLS discretized lid-driven cavity,
as well as the problem of concentric rotating cylinders (for which an exact solution is
available), and several other problems (see, e.g. the solution crystal growth hydrodynamical
calculations of Yeckel et al. [19]). Nor does setting a boundary traction in the manner
described in Section 3.1 improve the situation. Thus, it can be concluded that the negative
effect of setting a pressure datum or boundary traction is a general concern when using
GMRES, and most likely, also when using other projection-based iterative solvers.
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